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Although in 2014, Switzerland had an average of less than two fatalities per billion vehicle-kilometres, making its
roads among the safest in Europe, still more than 17 000 traffic accidents occurred on Swiss communal roads,
cantonal roads and national highways. On the highway network of approximately 1800 km alone, there were almost
1700 accidents involving personal injuries. In order to further reduce this number of accidents, it is important that
accident risks are assessed as accurately as possible. A state-of-the-art methodology is used to develop a Bayesian
probabilistic network model to estimate the number of accidents involving personal injury on the Swiss highway
network. The developed model predicts the number of accidents on a given highway segment and can be used
to identify segments with a high expected number of accidents. During validation, the number of accidents was
correctly predicted on 86% of the segments with a tolerance of 25%. The model can also be used to conduct
parametric studies, which help to ensure that the risk reduction interventions are effective and efficient. Road traffic
and road infrastructure engineers and managers can use the model during the decision-making processes in the
planning, construction and maintenance of road networks.

Notation oy posterior parameter for the expected number of
AADT annual average daily traffic accidents per accident type k per segment i
B matrix of regression coefficients ﬂ, prior scale parameter representing the weighted
l length of segment (km) exposure for each segment i
n sample size ,8, posterior scale parameter representing the weighted
P number of risk indicators considered exposure for each segment i
t tolerated uncertainty for verification of compliance €ir vector of error terms per accident type k and per
(0-25) segment i
v exposure, represented by the number of vehicles At observation period (year)
travelling on a road segment with a specific length A mean accident rate
v; exposure on segment i ik mean accident rate for type k accidents on segment i
V; observed exposure on segment i /l;k prior accident rate
X design matrix of j = 1,..., u different indicator /llk posterior accident rate
variables e background rates for each accident type considered
X1l e Xig A matrix of k = 1,..., z different target variables, in this
. ) . case the posterior accident rates 4,
X “\ X o X Ay e Ay
Yir vector with numbers of accidents of type k on A = /'L:” - )L:”
segment i nlo Tz
Vir observed number of accidents of type k on g matrix of the error terms
segment i €11 .. €L
y number of accidents (per year)
)? predicted number of accidents = = 8"” 8;12
h% observed number of accidents
a;.k prior parameter for the expected number of accidents 0] binary variable with values of 1 (match) and 0 (does
per accident type k per segment i not match)
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Introduction

Although the number of accidents in Switzerland is lower than in
most European countries, road safety is a major societal concern.
In 2013, 26 025 people died on the roads of the European Union
(EU28) due to road accidents (ETSC, 2014). In 2013, 24 out of the
32 countries monitored by the Performance Index Report Program
showed a decrease in the number of road deaths compared to the
previous year. Slovakia (—24%) and Switzerland (—21%) registered
the highest drops in 2013 against 2012 (ETSC, 2014).

Despite these comparatively positive results, according to the
evaluation of the road traffic accident records of the Federal Roads
Office (FEDRO) in 2014, on the entire Swiss road networks, there
were over 17800 traffic accidents, involving personal injuries
(ASTRA, 2015). During 2014, the number of fatal accidents
on Swiss roads has decreased from 269 to 243 persons when
compared to 2013, a reduction of 10%. A more modest reduction
in accidents with seriously injured persons also occurred in
2014, when the number decreased from 4129 in 2013 to 4043
in 2014, a reduction of 2% (ASTRA, 2015). In order to make
further reductions in the number of accidents, it is necessary to
assess traffic risks as accurately as possible, so that they can be
appropriately considered during decision-making processes in the
planning, construction and maintenance of road sections and road
networks.

Bayesian inference and updating algorithms have gradually
become more relevant in the field of accident risk assessment, and
modern accident risk analysis is often based on the Bayesian
interpretation of probability (e.g., Persaud et al., 2010). Empirical
Bayesian (EB) methods were investigated first and are still
frequently applied (e.g., AASHTO, 2010; Persaud et al., 1999).
The EB method is considered as the most common state-of-the-art
method for the development of accident prediction models, and
considerable research has been conducted using it, including that
by Carlin and Louis (1997), Cheng and Washington (2005), Elvik
(2008), Hauer (1986, 1992), Hauer et al. (1991, 2002), Persaud
and Dzbik (1993), Persaud et al. (1999) and Tunaru (2002). The
EB method has already been compared to methods based on the
full Bayes (FB) approaches. Persaud et al. (2010), for instance,
came to the conclusion that the differences between the two
methods were too small to be of any statistical significance or
practical relevance. However, the magnitude of uncertainties
connected to the predictions is different between the approaches
and indicate that estimates based on methods which use the FB
approach are more precise. Bayesian probabilistic networks (BNs)
can be used as a helpful tool to apply Bayesian inference and
updating algorithms in an intuitive, understandable and illustrative
manner. An overview of the current developments in accident
research can be found in Mannering and Bhat (2014) and Lao ef
al. (2014). In this paper, the methodology described by Schubert
et al. (2007) and advanced by Deublein ef al. (2013) is used to
develop a BN model to predict the number of injury accidents
that are likely to occur on the Swiss highway network (class 1
and 2).

Bayesian inference and updating algorithms are used to establish
a full BN which represents the joint probability density function
of all random variables of which the model consists in a compact
manner. For general concepts of Bayesian inference calculations,
the reader is referred to Ang and Tang (2007), Benjamin and
Cornell (1970), Congdon (2006) and Pearl (1988). For a detailed
description of BNs, reference is given to Cowell et al. (1999),
Jensen and Nielsen (2007) and Kjaerulff and Madsen (2008).

BNs are designed to represent the knowledge of a problem, explicitly
encoding the dependency between the variables in the model by
causal relationships. So-called evidence can be introduced into
the parent (input) nodes of the BN in terms of measured observations
of the risk-indicating variables. The inference calculation of the
BN uses the structure and the conditional probability tables (CPTs)
for propagating the observed information of the evidence through
the network and to assess the conditional predictive probability
distribution of the response variables. Non-linear relationships
between risk-indicating variables and response variables can be
implemented and the consideration of uncertainties related to the
influence of the risk-indicating variables on the response variables
is facilitated, which is necessary in the estimation of accident
risks according to Der Kiureghian and Ditlevsen (2009) and Faber
and Maes (2005) as it allows for capturing both aleatory and
epistemic uncertainties in accident modelling. Information provided
by the Federal Road Office (FEDRO) was used to develop the
network, to establish the CPTs of the BN, to learn the BN and to test
the model.

Methodology

The methodology can be subdivided into five main steps
(Deublein et al., 2013). These steps are shown in Figure 1 and
briefly explained in the subsequent sections.

Since the methodology is exclusively based on data, a large and
reliable data set with response variables (e.g., injury accidents,
number of fatalities) and risk variables (e.g., road design parameters,
traffic volume) is required. During the model development, the data
are used for two complementary, but not overlapping, modelling
steps. First, the information from the data is used to establish a
multivariate Poisson-lognormal regression model which forms the
basis for the prior BN. Predictions of the prior BN are exclusively
based on the results of the regression analysis. The regression
parameters and covariance structures between response variables
and risk-indicating variables are assessed probabilistically, allowing
the interpolation and extrapolation of the information of the data
into model domains for which no data are available (e.g., maximum
traffic volume (annual average daily traffic (AADT)) in the data set
is 80000 vehicles/d but the model covers a range up to 100000
vehicles/d). Second, the information of the prior BN is updated
by means of parameter-learning algorithms using the observations
of response variables and risk-indicating variables as contained
in the available data set. The updating of the prior model can be
considered as a replacement of the prior model probabilities with the
values of the updated posterior model probabilities. However, only
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1. Define homogeneous segments

2. Calculate posterior accident rates

3. Perform multivariate (negative binomial) regression analysis
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4. Develop the Bayesian network

5. Determine the expected number of accidents

Figure 1. Main steps of methodology

the prior model probabilities for which observations of the response
and risk variables are available are replaced. The replacement is
incorporated into the updating process by assigning a very low
weight to the prior model information. This ensures that the use of
the information from the applied data is implemented into the model
development process in a complementary manner solely.

Define homogeneous segments

In the first step, the highway network is subdivided into
homogeneous segments (HSs), taking into account the values of the
variables considered to be significant in the prediction of the
number of accidents, e.g. AADT, percentage of heavy good vehicles
(HGV), curvature (BEND), slope/gradient (SLP). A homogeneous
segment is defined as a road segment in which the values of the
considered variables remain constant. For example, if the only key
variable was curvature, then, every time the value of the curvature
changed, an HS would end and another would start, independent of
their length, until the entire road section or network is evaluated.
From here on, the word ‘homogeneous’ is dropped as all segments
are homogenous and only the word ‘segments’ is used instead.

Calculate posterior accident rates

In the second step, the accident rates for the different types of
accidents are calculated for each segment. A two-level hierarchical
approach is used.

Level one

On the first hierarchical level, the prior distributions of the
accident rates are assessed. This is done by (@) estimating the
background accident rates based on the accident counts, traffic
volume and length of the entire network, and then by (b) updating
these rates using the observed number of accidents on each
segment. The background accident rate, which is assessed based
on the accident observations divided by the average exposure of
the entire road network, can be understood to be the ‘best guess’
for the accident rate of a specific road segment as long as nothing
is known about the risk indicators of that segment.
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It is assumed that the number of accidents on a segment is best
represented by means of a Poisson distributed random variable
(Equation 1), as done by many other researchers, such as Park
and Lord (2007) and Song et al. (2006)

1. YAy ~Poisson(v; - Ay )

Accident data observations on road sections are often characterised
by very large deviations, which are referred to as over-dispersion
(Berk and MacDonald, 2008; Cox, 1983; Dean and Lawless, 1989;
Gschloessl and Czado, 2006; Hauer, 2001; Karlis and Meligkotsidou,
2005). This means that the sample variance frequently has a value
greater than the sample average. For this reason, the previously
mentioned assumption of a Poisson distribution is not suitable
for modelling the expected accident rate because it has only one
parameter and does not allow modelling the variance independently
of the mean. As an alternative approach to the Poisson distribution,
it can be assumed that the number of accidents can be best
represented by a negative binomial distribution. This is a mixture
of (1) a Poisson distribution, which reflects the probability of a
certain number of accident events on a given segment over a defined
period, and (2) the natural conjugated Gamma distribution with the
probability distribution of the Poisson parameter A (Gelman et al.,
2004).

For this reason, the mean accident rate per segment / and accident
type k is represented as Equation 2

2. Ay ~Gamma(ay, B;)

where o is the shape parameter and f is the inverse scale
parameter of the Gamma distribution.

The combination of the Poisson and Gamma distribution results
in a negative binomial distribution with parameters ¢, B and A
(Equation 3). Notice that Equation 3 does not contain the exact
probability distribution functions, but it shows how the Poisson
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and Gamma distribution functions are connected as elements of
the negative binomial distribution. Definitions of the Poisson and
Gamma probability distribution functions can be found in Faber
(2012). The derivation of Equation 3 can be found in Gelman
et al. (2004).

_ Poisson(y[4) - Gamma(4|e, )

Yle p~NBOle ) ~—c el 101+ B)

3.

where the corresponding expected value £ [—] and variance VAR
[-] are computed in accordance with Equation 4.

o o
4 EM:B and VARM:E(ﬁ+1)

Level two

On the second hierarchical level, the probability distributions used
to represent the prior and posterior Gamma parameters (see level
one) are determined. The probability distribution of the prior
Gamma parameters corresponds to Equation 5.

5. A, ~Gamma(0), ;)

The expected value of the Gamma-distributed prior accident rate
is determined using Equation 6

where ),;.k and a;k are given by Equations 5 and 7, respectively.
The Poisson parameter A itself is modelled using the hyper-
parameters of a Gamma distribution as described in Gelman et al.
(2004).

7. O{ik :lk'ﬁi

ﬁl can be seen as a way to counteract the influence of very long
segments by reducing their weight in relation to their length
(Equation 8).

’

1
Bi:Vi'_

8. P

The background rates are to be either taken from the literature,
expert opinion or calculated empirically from historical data.
In the latter case, the observation period should be sufficiently
large to obtain a good approximation of the background rate, for
example, 5 years. It must also be considered that the data are
non-stationary, that is, they do not change significantly over time,
so that the accident rates are changing over time, for example,

due to changes in demography, legislative measures or technical/
automotive developments. If the analysis of historical data is to
be done for a less than sufficiently large observation period, it
can, however, be assumed to be representative if it is based on
mean values of the indicator variables, and the accident rates for
each accident type and known trends are appropriately taken into
consideration in the analysis.

The estimated values of the scale parameter are the same for all
segments of one type for all accident rates. The accident rate
varies from segment to segment due to only the number of
vehicles travelling on the segment and the length of the segment,
that is, the weighted exposure.

The posterior accident rates are calculated by updating the prior
accident rates per segment based on the background rates and
using the observed number of accidents on each segment
(Equation 9). The parameters of the Gamma distribution for the
posterior accident rates are calculated as shown in Equations 10
and 11 (Gelman et al., 2004).

"

9. Aulvis Vi ~ Gamma(oc;{, B;)

10. o = o+

M. B =B +¥

These posterior, or updated, accident rates are then used in the
multivariate regression analysis in the next step, as target variables.
This updating process essentially alleviates, or drastically reduces,
the problematic issues in the evaluation of rare events, such as
excess dispersion and regression to the mean, since the effect of
individual outlier values on the regression analysis (as estimated
by the correlations), is reduced, and none of the accident rates for
individual segments remains at zero, albeit they remain very small.
The latter conceptually means that the use of updating ensures that
not observing any accidents on a segment does not mean that no
accidents can ever occur there.

Perform multivariate (negative binomial) regression
analysis

In this step, the differences between the expected accident rates, [\,
and the observed accident rates, A, that is, the residuals, R
(Equation 12), and the covariance of the error terms (Equation 14)
are determined using multivariate regression analysis. Multivariate
regression analysis is a special multifactorial form of regression
analysis, in which not only different risk indicators enter into the
regression equation at the same time, but also several target variables
are estimated at the same time. Thus, potential dependencies on
both sides of the regression equation can be taken into account,
which is not possible with other types of regression analysis,
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that is, linear or multivariable regression analysis. The general form
of the multivariate regression equation, in matrix form, is given in
Equation 15 (Gelman et al., 2004).

12 R=A-XB=A-A

The matrix with the regression coefficients B corresponds to the
case of normally distributed target variables (or log-transformed
normal distributed target variables) estimated using the method of
least squares. These regression coefficients are calculated using
the latter method as follows (Gelman ez al., 2004) (Equation 13).

13. B=(X'X)'X’A

The covariance matrix of the error terms can be estimated on the
basis of the residuals (Equation 14).
~ 1 AT A
X=—RR
14. n—p-—1

1>

15. In(E[A|X]) = BX + & E[A|X] = exp(BX + E)

The multivariate regression model can be easily modified to
take into account indicator variables and different functional
relationships.

Development of the Bayesian network

In this step, a BN model is developed and learned so that it can
be used to determine the predictive probability distributions for
the expected accident rates of each investigated accident (injury)
type, for example, accidents with a maximum of light, serious and
fatal personal injuries. In the BN model, all indicators and target

variables are represented as nodes and the relationships between
the variables are represented as directed edges The possible values
of each variable are grouped in intervals (hereinafter referred to
as states), and the occurrence probabilities of the states are
represented with discretised distributions. For given probability
distributions of the indicator variables, the resulting probability
distributions of the accident rates can be calculated using a CPT.
More information about BNs can be found in Jensen and Nielsen
(2007), Pearl (1988) and Pearl (1997), among others.

The values used in the prior BN model are determined exclusively
using the multivariate regression analysis, and it is considered
to be the basic model. This model is then learned, or updated,
using the expectation-maximisation algorithm (EM algorithm)
(Box and Tiao, 1992; Heckman, 1995) with the observed number
of accidents per segment within a specified time period. It is used
to update the prior conditional probabilities and to adjust the
causal relationships to reflect the new information. The learned
BN is referred to as the posterior BN.

The observed accidents are used to establish contingency tables for
the EM-learning algorithm. An example of a contingency table for
light injury accidents (LINJ) is given in Table 1 (refer to Table 2 for
more information on the different variables used). By preparing the
data in that way, it is relatively easy to see potential relationships
between risk-indicating variables, that is, the covariance of different
indicator and target variables, and to update the relationships in the
conditional probabilities of the target variables.

Changes in the probability distributions compared to the prior
model are done by learning only in the areas of CPTs in which
there are observations. For all other areas, the model results are
still based on the models of the regression analysis.

The posterior BN model is the model to be used to calculate the
conditional probabilities of the number of accidents per road
segment.

Year Segment Type AADT HGV RAD GRAD+ — LINJ
2010 1 Tunnel 30000 4 1000 0 0-0560
2 Open road 30000 4 4000 6 0-0573
3 Open road 30000 4 2000 3 0-0583
2011 1 Tunnel 30000 4 1000 0 0-0560
2 Open road 30000 4 4000 6 0-0573
3 Open road 30000 4 2000 3 0-0583
2012 1 Tunnel 30000 4 1000 0 0-0560
2 Open road 30000 4 4000 6 0-0573
3 Open road 30000 4 2000 3 0-0583
Table 1. Example of a contingency table
5
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Variable Description Units Classification
AADT Annual average daily traffic based on the 2010 traffic model (ARE, 2010) Vehicles/day 10000, 20 000,...,
100 000
HGV Percentage of heavy traffic (heavy good vehicles) with respect to the AADT % 5,10,..., 25
based on the 2010 traffic model (ARE, 2010)
RAD Middle curve radius based on author’s calculations m 1000, 4000, ..., 8000
GRAD+ Amount of the average slope (up) based on the authors’ own calculations % 0,1,36
(GRAD1 in regression equation)
GRAD- Amount of the average slope (down) based on the authors’ own calculations % 0,1,3,6
(GRAD?2 in regression equation)
SPEED Signalled maximum speed km/h 60, 80, 100, 120
LANES Number of lanes in each direction — 1,2,3,4
EVEN (12) Road surface texture: evenness in the longitudinal direction, according to VSS  — 2,4,5
standard SN 640 925b (VSS, 2003). In this case, a mark between 0 and 2 is
good, between 2 and 4 is sufficient, and 5 is poor surface condition.
ROUGH (14) Road surface texture: grip, according to VSS standard SN 640 925b (VSS, — 2,4,5
2003). In this case, a mark between 0 and 2 is good, between 2 and 4 is
sufficient, and 5 is poor surface condition.
TYPE Distinction between ‘open road’ including bridges, and ‘tunnel’ including — 1,2

galleries.

Table 2. Risk-indicator variables

Determine the expected number of accidents

In this step, the expected number of accidents is estimated for
each segment. This is done by first entering the values of the
indicator variables as input into the posterior BN model (i.c., the
evidence is set on the observed states of the input indicator
variables) for each segment. The inference algorithms of the BN
model are then used to propagate the probabilities of the input
nodes through the network, which results in updated predictive
probability distributions of the target variables that are conditional
on the entered evidence. The mean values of the predictive
probability distributions are then multiplied by the exposure of the
segment, to obtain the expected number of accidents per year,
instead of the accident rates.

Data

The prediction model to estimate the accidents involving personal
injury was developed solely using available data from FEDRO for
the Swiss highway network from 3 years (2010, 2011 and 2012).
The road network was divided in two groups of road types, open
roads (including bridges) and tunnels (including galleries). The
data were extracted from four modules in the FEDRO information
management system, MISTRA. The data were processed using
ArcGIS software, developed by the Environmental Systems
Research Institute (ESRI, 2011). This involved creating a network
of equidistant, georeferenced points of reference, and associating
all data to these points of reference, that is, all infrastructure
and transportation-related information to be used to divide the
network into segments. All accident data were also assigned to
these points of reference by means of the nearest neighbour

method. The resolution of this network corresponded to the
constant spacing of the equidistant points of reference. The
original 82 road sections were divided using 147 323 reference
points, that is, before the network was divided into segments (see
‘Case study’ section).

Variables

The target variables are the accident rates of (1) accidents with no
more than light injuries (LINJ), (2) accidents with no more than
heavy personal injuries, (SINJ) and (3) accidents with fatalities
(FAT). Accidents involving only material damage were excluded
because the data could not be regarded as complete since collecting
these data was not mandatory for the police departments in
Switzerland. The accident rates are expressed as the ratio between
the number of observed accidents in a given period and the
exposure (Equation 16), where exposure is defined as the product
of segment length (km), the observation period (years) and the
annual average daily traffic (AADT) (Equation 17).

r=2
16. v

17. v=1[At-AADT

The indicator variables to be used are either infrastructure
or traffic characteristics, that is, characteristics which can be
controlled and/or changed by the infrastructure managers of
FEDRO. The effects of road users (e.g., age, influence of
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narcotics and drugs, traffic violations, etc.), influences of the
vehicle (e.g. occupant protection, assistance systems, etc.) and the
weather (rain, ice, fog, etc.) are not considered in the current
investigations; however, such surrogate variables are important for
the overall explanation and estimation of the accident occurrences
on road networks. Consideration of such variables is planned for
future research projects. The indicator variables are summarised in
Table 2.

Case study

Define homogeneous segments

The 147323 equidistant reference points (see ‘Data’ section)
were grouped, on the basis of the indicator values, into 13298
segments (see section 0), each containing a constant value for
the indicator variables. Based on the combination of the values
of the indicators, there are 691200 possible types of segments.
The shortest segment has a length of 20m (corresponding to
the minimum possible resolution) and the longest segment has
a length of 5300. The average segment length is 221 m and 75%
of all segments are longer than 60 m.

The relative frequencies of the categorised values of the indicator
variables (Table 2) and target variables for all 13 298 segments
are shown in Figures 2 and 3, respectively.

Note that the intervals of the bins in Figure 3 have different sizes.
For light and severe injuries and for rates smaller than 0-01, the
interval size is 0:001. For rates between 0-01 and 0-02, the
interval size is 0-01. The reason is that the most relevant region
for accident prediction is between 0 and 0-01, and this region
should thus be modelled using a higher level of detail. The same
applies for the histogram showing the fatal accident rates. Here,
an interval size of 0-0001 was used from 0-0 to 0-001 and an
interval size of 0-001 between 0-01 and 0-02.

Using a higher resolution in the histogram for the region with
higher accident rates would lead to a much higher computational
effort but would not yield improvement in the accuracy of the
result. Of course, this problem could in general be formulated as
an objective function and the bin size could be optimised for the
problem at hand. However, the less formal approach used here
was shown to be sufficient in this project.

Calculate posterior accident rates

In order to develop the risk model and describe the causal
relationships between the indicator and target variables, the
number of observed accidents was converted into an annual
average per million vehicle kilometres (mvk). It was assumed that
the values of the AADT and HGV remained constant over the
observation period.

08 TYPE AADT: veh/day x10% HGV: % RAD: m x103 GRAD+: %
07 03 06
g0 025 05
305
o 0-2 0-4
Lo4
203 015 03
= ©
j,:‘j 02 5 01 02
0-1 ch 005 0-1
0 (@)
12345678910 5 10 15 20 25
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07 06 0-8 07
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£ 06 05 07 06
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$ 05 05 06
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Figure 2. Histograms of the relative frequencies of the indicator

variables of the 13 298 segments
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Figure 3. Histograms of the relative frequencies of the target
variables of the 13 298 segments

The background rates used in this investigation have been
computed empirically based on the historical data from the entire
network. The background accident rates are shown in Table 3.
These rates are used when there is no knowledge about the
number of accidents in a given segment; hence they are used as
the best guess for predicting the accident rate.

Determine residuals and covariance of error terms

To account for the different road types distinguished in the
model (open roads (including bridges) and tunnels (including
galleries)), an individual multivariate regression analysis was
performed for each road type. The general regression equation is

ZULV }.’Usv ).‘UG
[LINJ/mfK] [SINJ/mfk] [FAT/mfk]
0-058443 0-008717 0-001088

Table 3. Background accident rates

given in Equation 18. All indicator variables were used without
transformations, for example, squaring each indicator variable, to
strengthen their influence on the regression results, as these were
found not to provide a significant benefit in the accuracy of
the prediction model, and only added to the complexity of the
interpretation of the results.

In(LIN|TYP) = by + b, - AADT + b, - HGV
+ by - RAD + by - GRADI + bs - GRAD2...

+ bg - SPEED + by - LAN + bg - EVEN
18.  +by-ROUGH + ¢

The expected values of the regression coefficients for all three
target variables are shown in Tables 4 and 5. The statistical
significance of the regression results was checked using a
Student’s ¢ test at a significance level of o = 0-05 and with n-u-1
degrees of freedom. In Tables 4 and 5, a high significance is
denoted with ‘“++’°, a low significance with ‘+’ and no significance
with ‘.
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Regression coefficient A LINJ A SINJ AFAT

Elx] STDEV[x] Sig Elx] STDEV[x] Sig Elx] STDEV[x] Sig
Bo (intercept) -2:90 379 x 1072 ++ -4-89 546 x 1072 ++ =7-00 555 x 1072 ++
By (AADT) 1119%x107° 264x 107 ++ 791 x107 380x107 ++ =-192x10° 386x 107 ++
B, (HGV) —974%x 1072 126x 1072 ++ =187x102% 181x102 ++ -950x107° 184x107° ++
Bs (RAD) 548 x 107 160 x 107° ++ -322x10 230x10° ++ -682x10"° 233x10°% ++
Bs (GRAD+) 243 x 1072 432x1073 + 458 x 1072 621 x 1072 ++  749x107% 631x1073 ++

. -2 ) -3 _ . -2 A -3 . —2 A -3

Bs (GRAD-) 343 x 1072 434 x 10 415x 1072 624x107° + 774x 1072 634 x 107 +
Bs (SPEED) —2:13x 1073 252x107% ++ =-232x102 363x10™% ++ -295x107° 369x107* ++
B7 (LANES) 251 %1072 105x 1072 + 336x 1072 151 x1072 ++ 215x107% 153x 1072 ++
Bs (EVEN) 6:88x 1072 529x107 ++ 162x107" 761x1072 ++ 219x107" 773x 1073 ++
Bos (ROUGH) 717 x 1072 921x102 + -203x102 133x102 - -125x1072 135x107%2 -

Table 4. Regression coefficients for open roads (including bridges)

Develop and learn the BN

Figure 4 shows the two components of the BN. A structural
component (showing the nodes and edges and how these are
connected in correspondence to the causalities of the problem)
and the parameter component, which quantifies the strengths of
the connections. Notice that Figure 4 only refers to the structural
component and is graphically representing the considered nodes
and edges. The structure of the developed Bayesian network is
convergent because all the edges run directly from the individual
nodes of the indicator variables to the nodes of the target
variables. Each node represents one of the risk-indicator or target
variables. The conditional probability distributions of the accident
rates are calculated for the prior BN from the results of the
multivariate regression analysis, entered into the CPTs, and
transferred to the respective nodes of the network.

The comparison of the expected number of accidents and the
observed numbers of light injury accidents are shown in Figure 5.

It can be seen that the expected results obtained by multivariate
non-linear regression analysis (Figure 5(a)) are improved when
the learning algorithms are used (Figure 5(b)). This can be seen as
the correlation coefficient between the expected and observed
values improves from » = 0-7935 (coefficient of determination
R* = 0-6296) (prior BN model) to » = 0-8334 (coefficient of
determination R? = 0-6952) (posterior BN model).

In addition to the increase in the correlation coefficient, it can be
seen that the regression lines are close to the optimum line (y =
0 + 1 * x), which implies that there is little bias in the predictions.
All points do not lie on the optimum line because the number of
observed accidents cannot be predicted with 100% accuracy using
the selected indicator variables. It is likely that this variability
can be reduced by using larger data sets (longer observation
periods) and additional indicator variables. It should be noted
that variables describing driver characteristics are presently not
considered in the model.

Regression coefficients A LINJ A SINJ A FAT

Elx] STDEV[X] Sig Elx] STDEV[x] Sig Elx] STDEV[x] Sig
Bo (intercept) -2-78 114 x 107" ++ —450 147 x 107" ++ =670 127 x 107" ++
Bi (AADT) 6:94x107® 943 x 1077 ++ 272x10° 122x10° ++ 325x10® 1-05x10° ++
B> (HGV) -1-52%x 1072 391x1072 + -276x107% 504x107° + -231x107 435x1073 ++
Bs (RAD) -526x 10 525x10™® 4+ -793x10™ 678x10° + -830x10 584x10° +
B4 (GRAD+) -136x 1072 153%x107° - -271x107% 1.97x1072% - 184 x 1072 1.70x 107 -
Bs (GRAD-) -650x 1072 148x 1072 - 4-65x 107 191 x107% - 420x 1072 165%x 1072 -
Bs (SPEED) —449 %x 107 794x10™% - -564x102 103x10° - -674x107 884x10™* +
B, (LANES) 116 x 107" 312 x 1072 - 1:03x 107" 402x 1072 - 842 x 1072 347 x 107 -
Bs (EVEN) 550 % 107 1-81 x 1072 - 100 x 107" 234 x 1072 - 154 x 107" 2:01x 107 +
Bo (ROUGH) 2:80x 1072 142 x 107 + 913 x 1072 183x 107 + 710 x 107 158 x 1072+
Table 5. Regression coefficients for tunnels (including galleries)
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Risk indicators

Accident events

Figure 4. BN model structure

The comparison between the expected and the observed numbers
of severe and fatal injury accidents are shown in Figure 6. The
severe and fatal injury accidents were combined as there were too
few observations for each to be treated alone. It can be seen that
the expected results obtained by multivariate non-linear regression
analysis (Figure 6(a)) are improved when the learning algorithms
are used (Figure 6(b)), as shown by the improvement in the
correlation coefficient between the expected and observed values
(from r = 0-4568 (coefficient of determination R* = 0-2087) (prior
BN model) to » = 0-6227 (coefficient of determination R*> =
0-3878) (posterior BN model)). In these scatter plots, however,
there is a division of the point clouds for accidents involving
severe and fatal injuries, which was not the case for the light

Lightly injured road users
Prior BN

Observations 2010-2012
[e)]

2 - [
o
o ° y = 0-9365x — 0-0026
R? = 0-6296
0 N : : : . .
0 2 4 6 8 10 12

Predictions 2010-2012
(a

Figure 5. Comparison of predicted against observed number of
accidents with light personal injury with prior BN model (a) and
with posterior BN model (b)

injury accidents. Both the relatively low correlation coefficient
and the abnormalities in the point clouds are due to the small
sample size of the observations of accidents with severe and fatal
personal injury in the Swiss national roads.

The relationships are dominated by two groups: (1) the set of
observations for which values of the accident events and the
accident rate are actually observed and (2) the set of segments on
which no accidents with severe or fatal personal injuries were
observed. In the latter case, although the zero observations of
the individual segments with the network-wide background rate
are methodically updated, their effect on the prediction quality is
low.

Lightly injured road users
Posterior BN

Observations 2010-2012
[e)]

y =0-9398x — 0-0025
R? =0-6952

0 2 4 6 8 10 12
Predictions 2010-2012
(b)
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Figure 6. Comparison of predicted against observed number of
severe and fatal injury accidents with prior BN model (a) and with
posterior BN model (b)

2 ] o o]
o Severely injured road users,
Posterior BN

Observations 2010-2012

0-5
y=1.026x — 0-0035
R?2=0-3878

o (o]
T

15 2

Predictions 2010-2012
(b)

Determine the expected number of accidents

Using the learned BN model, the expected number of accidents
for each type of accident in 2009 was predicted. A backward
prediction, rather than a forward prediction, was selected as
available data were more complete in the years 2010, 2011 and
2012 than in 2009, and it was considered to be wiser to use the
more complete years to learn the BN model and use 2009 data for
testing the model.

Results

The results are presented using geo-referenced network graphics.
The coordinates in Figures 7 and 8 correspond to the Swiss
coordinate system CH1903 LVO03. Scatter diagrams, like the

ones shown in Figures 5 and 6, are not suitable because the
observations from 2009 are integer values, while the predictions
belong to the set of natural numbers that have decimal places.
This was not the case in the earlier figures because averages over
3 years were displayed.

For the entire network, there were only 9380 segments (instead of
13298) for which observations had been made. On these road
segments, in 2009, there were a total of 979 light injury accidents,
140 severe injury accidents and 16 fatal injury accidents. Figure 7
shows the observed (Figure 7(a)) and predicted (Figure 7(b))
number of light injury accidents for a part of the network (i.e.,
HW1 between cities A and B).

5 5
2'4:)(10 T T T T T P T T T3 2 2‘45)(10 3 2
24 e S = N T L 2.4} 18
235} @_' 1t e 235 16
- £
g 23| » 1bha 5 3L 1.4
9 T, 4} __/'f
8 225k N L 412 %225 12
© C
S 22} g 1 S 22}
T D 15} !
g 2154 / 1 @08 S 215f 08
s 21t 1 Mos > 21} 06
205} '/ 1 o4 2050 1 Mo
2 eA] | Mo2 2RE] { lo>
1-95 S\‘ L L I L I L 1 L 0 1-95 - L 1 I I 1 I I I 0
6 605 61 615 62 625 63 635 64 645 65 6 605 61 615 62 625 63 635 64 645 65
X coordinates: m x 10° X coordinates: m x10°
(a) (b)
Figure 7. Enlarged view for section of the HW1 between City A and
City B (shading scale indicates the number of accidents) with observed
(a) and predicted (b) number of light injury accidents in 2009
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Figure 8. Comparison between predicted and observed number

of light injury accidents in 2009 for all roads in the network with

observations; white = 1 matching values (with tolerance of 25%),
black = 0 no matching values

A comparison of observations and predictions in Figure 7 shows
that, despite the limited amount of data for many segments, the
shading (indicating the number of accidents) in Figure 7(b)
matches quite well with Figure 7(a), that is, the predicted number
of accidents is quite close to the observed number of accidents. It
can, however, also be seen that there are differences.

From Figure 7, it can be seen that the model performs reasonably
well. This can, however, be better seen by the fact that the
number of accidents are correctly predicted on 86-53% of the
road segments with a tolerance (f) of 25%, using Equation 19.
This is illustrated in Figure 8, which shows the agreement
between the predicted and the observed number of accidents for
all road segments in the network with observations.

For y=10
oo L if S+
L0, if yE -1,y +1]
for y> 1
a):{ Lif pep—t-ny+t-y
19, 0, if pely—t-y.y+1-5]

It can, however, also be seen that not all accidents were correctly
predicted by the model. This is because accident occurrence can
only be partially explained using the selected indicator variables,
as there are many more factors that affect whether or not an
accident occurred, for example, the presence of road works, ice or
fog on the highway, confusing sections with frequent congestion
events.

Conclusion

In this paper, it was shown how an existing methodology can
be used to develop models to predict the number of light,
severe and fatal injury accidents that will occur on the road
segments that comprise the Swiss highway network, as well as
the conditional probability distributions of the accident rates
and thus the uncertainties associated with the estimates. It was
also shown that the developed model, which is based on easily
observable indicator variables, can be used to identify road
segments that are likely to have relatively high numbers of
accidents; information that is useful in the planning of risk-
reducing intervention.

Additionally, it was found that

1. when combined, simultaneous consideration of all indicator
variables show that they can be used to predict the number of
accidents reasonably well

2. using a multivariate regression analysis, the accident rates can
be extrapolated to larger sample spaces

3. the updating of the BN model increases the accuracy of
accident predictions by about 5-10% and

4. it is possible to obtain a high degree of agreement between
the estimated and observed numbers of light injury accidents
even with a relatively small data set. That said, using a purely
data-based prediction, it is not currently possible to accurately
predict fatal injury accidents, as the number of observations is
too small. A combination of severe and fatal injury accidents
is, therefore, recommended.
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